位运算与集合
时间:2023-06-16 18:34:57来源:博客园

前言

在刷 LeetCode 的时候,我们常常碰到需要枚举同时选择几个元素,或者说枚举选择一个集合的情况,即同时选择 $\lbrace0, 1, 2\rbrace$ 或者 $\lbrace0, 1,3\rbrace$ 等,这里集合中的数字表示要选择的元素的索引。


【资料图】

通常情况下,我们往往会使用哈希表来表示集合,好处在于可以方便的在 $O(1)$ 时间内确定元素是否处于集合中,坏处则是当我们需要做集合之间的运算,例如求交集或者并集,那么就需要 $O(n)$ 时间才能实现;另一个缺陷就是,当递归函数的可变实参中存在哈希表(或者对哈希表的引用)时,无法通过添加 $cach$ 数组实现记忆化搜索。

于是,我们需要想一个新的办法来表示集合,由于集合可以由全集(包含所有元素的集合)中每个元素的选或者不选来表示,因此,很容易联想到二进制上每一位的 $0$ 和 $1$,例如 $101 = 5$ 表示集合中只有第 $0$ 个元素和第 $2$ 个元素。

使用数学化一点的语言,即集合可以以如下方式压缩成二进制下的一个数字:

$$f(S)=\sum\limits_{i\in S}2^i$$

其中 $i$ 表示集合中的元素在原数组中的索引。$\lbrace a[0], a[1], a[3]\rbrace$ 即可由 $2^0+2^1+2^3 = 13$ 即二进制数 $1101$ 表示。

集合与元素

根据上面提到的二进制表示集合的方法,我们可以在 $O(1)$ 的时间内实现集合与元素之间的运算。

具体运算表格参见灵神的 从集合论到位运算,常见位运算技巧分类总结!。无需记忆,自己做题的时候很容易就能推导出来。

集合与集合

集合与集合之间的运算也可以在用二进制数表示集合的情况下,在 $O(1)$ 时间内完成计算。

具体运算表格同样参见灵神的 从集合论到位运算,常见位运算技巧分类总结!。

同样无需记忆,自己做题的时候很容易就能推导出来。

遍历集合

在集合用二进制数 $mask$ 表示的情况下,集合中的元素个数可以由 C++ 库函数 __builtin_popcount(mask)计算出来。

设元素范围从 $0$ 到 $n - 1$,挨个判断元素是否在集合 $s$ 中:

for (int i = 0; i < n; ++i) {    if ((s >> i) & 1) { // i 在 s 中,注意 == 运算优先级高于 &        //     }}

枚举集合

重头戏来了:设集合为 $s$,从大到小枚举 $s$ 的所有非空子集 $sub$:

for (int mask = s; mask != 0; mask = ((mask - 1) & s)) {    // 处理子集 sub 的逻辑}

暴力的枚举集合的办法是从 $s$ 出发,不断减一直到 $0$,但是这样中途会有很多并不是 $s$ 的子集的情况。

假设集合 $s = 10101$,那么它的子集从大到小依次为:

$$\lbrace 10101, 10100, 10001, 10000, 00101, 00100, 00001\rbrace$$

如果忽略掉 $10101$ 中间的两个 $0$,即忽略第一位和第三位的 $0$(位索引从 $0$ 开始),那么它的子集的数字变化与普通的二进制减法是一样的,即:

$$\lbrace 111, 110, 101, 100, 011, 010, 001\rbrace$$

因此,当我们执行 $(mask - 1)$ & $s$ 时,以 $10100$ 为例,相当于强制跳过了 $10100$ 到 $10001$ 中间那些第一位和第三位数字不为 $0$ 的数。

套用灵神的说法,以 $10100$ 为例,普通的二进制减法会把最低位的 $1$ 变成 $0$,把这个最低位的 $1$ 右边的 $0$ 都变成 $1$,即 $10100\rightarrow 10011$,我们这个压缩版的二进制减法,也是把最低位的 $1$ 变成 $0$,但对这个最低位的 $1$ 右边的 $0$,并不会全都变成 $1$,而是只保留 $s = 10101$ 中存在的 $1$,其他的会依旧是 $0$。

Gosper"s Hack

Gosper"s Hack 算法是生成 $n$ 元集合中所有包含 $k$ 个元素的子集的算法。

这里先给出 Gosper"s Hack 算法的代码

while (x < uplimit) {    int lowbit = x & (-x);    int left = x + lowbit;    int right = ((x ^ (x + lowbit)) / lowbit) >> 2;    x = left | right;}

接下来讲一下 Gopser"s Hack 算法的思想:

对一个二进制数,例如 $110110$,我们需要找到它从左往右的最后一个 $01$,然后把这个 $01$ 变成 $10$,再把它右边的 $1$ 全部集中到最右边(这里右边的 $1$ 显然都是连续的,否则与最后一个 $01$ 矛盾),即 $110110\rightarrow 111001$。

在举了例子之后,Gosper"s Hack 算法的思想其实很好理解。

我们利用 $x + lowbit(x)$ 得到的结果,就是将 $x$ 的第一个 $01$ 变成 $0$,同时右边的数全都变成 $0$,即 $110110\rightarrow 111000$,如果我们使用 $x \oplus (x + lowbit(x))$,即可得到 $x$ 从最后一个 $01$ 起的右边的数,即 $110110\rightarrow 001110$,我们再除以 $lowbit$,即可去掉 $x \oplus (x + lowbit(x))$ 的最右边的连续的 $0$,又因为 $x + lowbit(x)$ 会将这个最后一个的 $01$ 变成 $10$,$01 \oplus 10 = 11$,因此 $(x \oplus(x + low)) / lowbit(x)$ 的 $1$ 的个数比 $x$ 的最后一个 $01$ 的右边的 $1$ 的个数还多了 $2$ 个,于是我们再右移两位,即得到了我们需要 $right$。

参考

从集合论到位运算,常见位运算技巧分类总结!

算法学习笔记(75): Gosper"s Hack

标签:

生活指南
  • 前5个月审批核准固定资产总投资6672亿元

    国家发展改革委6月16日发布数据显示,5月份,全国规模以上工业发电6886

  • 每日热门:上期所发布关于氧化铝期货合约上市挂牌基准价的通知

    App6月16日消息,上期所发布关于氧化铝期货合约上市挂牌基准价的通知。

  • 今日热门!杭州亚运村内部功能区首次公开亮相 一起全景感受无限好“村”光

    今天(6月16日)杭州亚运村内部功能区首次公开亮相杭州亚运村是运动员

  • 盲盒经营消盲区

    盲盒走红于市场且受到大批消费者追捧之际,经营过程中产生的信息不透明

  • 环球观天下!第二批国家级一流本科课程名单公布 重庆143门入选

    近日,教育部公布第二批国家级一流本科课程名单,共有5750门课程获认定

  • 【库存】2023年6月16日国内港口鱼粉库存

    港口鱼粉库存,。-饲料行业信息网

  • 广西玉林的特色水果有哪些?广西玉林特产是啥? 焦点日报

    玉林的特色水果有谷平香蕉、凤山杨梅、兴业贡柑、北流荔枝、玉林龙

  • 刚开始怎么学画画?初学者怎么画人物?|环球关注

    刚开始怎么学画画?1、要从基础开始学,绘画基础有素描、速写、色彩

  • 今日热文:通货膨胀与通货紧缩的区别是什么?二者有什么联系?

    通货膨胀与通货紧缩有什么区别?⑴含义不同: 通货膨胀指的是在货币

  • 散户如何看懂股市主力的撤单?怎么样看大单封涨停时撤单?

    散户如何看懂股市主力的撤单?面对某些股票的走势,我们经常会问:有

  • 买二手房注意事项及流程?买二手房过户后银行多长时间放款?_天天资讯

    买二手房注意事项及流程?买二手房注意看房本!二手房交易是否顺利,

  • 八哥鸟的寿命有多长?八哥鸟的智商有多高? 天天看热讯

    1、饲料配方:八哥的饲料以鸡蛋大米为宜,鸡蛋大米的调制方法是将大

  • 变更抚养权的法定条件包括什么内容? 变更抚养权的方式有哪些?_每日速读

    变更抚养权的法定条件包括什么内容?夫妻离婚后的任何时间内,一方

  • 实时焦点:大妈拉着童车转圈致孩子摔出什么情况?小孩摔到头怎么确定没事?

    大妈拉着童车转圈致孩子摔出什么情况?陕西西安,一大妈带孩子时拉着

  • 甲状腺功能亢进症表现有哪些?甲状腺功能亢进症怎么办? 全球时快讯

    甲状腺功能亢进症的表现,主要有心慌、手抖、多汗、情绪不稳、容易

  • 全球快看:电动三轮车驾驶证怎么考?电动三轮车驾驶证的考试内容是哪些?

    一、电动三轮车驾驶证怎么考电动三轮车驾驶证的考法如下:1 报名。

  • 民生
    • 热点在线丨情绪再次到来的时候 白羊没有从心底里要改变自己?

    • Adaptive Phage Therapeutics获得1200万美元B+轮融资-世界观焦点

    • 马已今服是什么意思?马已今服是什么梗|天天速讯

    • 罗山县法院:善意执行唤回友情 锦旗相赠字字情真